Reliability Champion Guidebook

Proven Behaviors to Increase Performance Results

Introduction

Entergy's customers are demanding greater reliability than ever before; therefore, it is critical to understand the cause of line outages and line outage prevention.

This Reliability Champion Guidebook is a supplement resource to reinforce what line supervisors were taught in reliability behavior training. Use this guidebook as a quick reference on the reporting tools and cultural behavior changes needed to improve distribution line reliability.

The key behaviors line supervisors should demonstrate to be a reliability champion are illustrated throughout this guidebook.

KEY BEHAVIORS OF A RELIABILITY CHAMPION

- Be a full-time reliability champion team player –
 use reliability champion language and recognize
 top reliability champion performers in your group.
- Expect your teams to identify and repair items that have degraded and fall into the R1 criteria on each and every job.
- 3. Fully leverage the reliability champion reporting tools to identify highest benefit improvement opportunities.
- 4. Determine the root cause of every outage, and use the correct causal codes on all trouble tickets.
- 5. Hold weekly face-to-face reliability team meetings to reinforce reliability champion behaviors and training, review outage and performance reports, and celebrate reliability champion performance leaders.

Table of Contents

RELIABILITY METRICS

Metric Definitions	1
Metric Calculations	2

RELIABILITY PROGRAMS

Asset Management Programs	3
R1: Key Actions	4
Reliability Meetings	5
Reliability Report Basics	6
Reliability Reports	7

OUTAGE ROOT CAUSE

Data Scrubbing	9
Causal Codes	10

Metrics Definitions

CUSTOMER INTERRUPTIONS	CI	Total customers interrupted.
OUTAGE DURATION		Time customers' power was interrupted in minutes.
CUSTOMER MINUTES	CM	Cls x Outage Duration = CMs
SYSTEM AVERAGE INTERRUPTION FREQUENCY INDEX	SAIFI	Cls / Customers Served = SAIFI
SYSTEM AVERAGE INTERRUPTION DURATION INDEX	SAIDI	CMs / Customers Served = SAIDI
AVERAGE OUTAGE DURATION	CAIDI	Average outage duration for any given customer.

CUSTOMER INTERRUPTIONS

CI refers to the number of customers who experienced the interruption. Listed as TOTAL_CUSTOMERS_AFFECTED in AMFM/DFM.

OUTAGE DURATION

Outage duration refers to the number of minutes a customer's power was interrupted for any given outage. Only outages greater than 5 minutes count in reliability metrics. Listed as TOTAL_DURATION_MINUTES in AMFM/DFM.

CUSTOMER MINUTES

CM refers to the total number of minutes all customers' power was interrupted, calculated by multiplying the total number of customer interruptions by the total of outage duration minutes. Listed as ACTUAL_CUSTOMER_MINUTES in AMFM/DFM.

SYSTEM AVERAGE INTERRUPTION FREQUENCY INDEX

SAIFI is a reliability indicator of the average number of interruptions a customer would experience, calculated by dividing the total customer interruptions by the total number of customers served by that network.

SYSTEM AVERAGE INTERRUPTION DURATION INDEX

SAIDI is a reliability indicator of the average outage duration for each customer served, calculated by dividing the total customer interruption minutes by the total number of customers served by that network.

AVERAGE OUTAGE DURATION

The average outage duration is a reliability index of the weighted average outage duration that any given customer would experience. Sometimes referred to as Customer Average Interruption Duration Index or CAIDI, it can also be viewed as the average restoration time.

RELIABILITY METRICS

Metric Calculations

KEY BEHAVIOR: Know what effect metrics have on SAIFI goals by understanding report terminology. This will help you understand what problems need to be addressed to improve your network's reliability.

5,000 CUSTOMERS IN NETWORK

3,000 on Feeder A – 3 outages 1,000 on Feeder B – 1 outage 1,000 on Feeder C – no outage

	Outage 1 feeder A breaker	Outage 2 feeder A recloser	Outage 3 feeder A breaker	Outage 4 feeder b line fuse	SUMMARY 4 outages
CUSTOMER INTERRUPTIONS	3,000	1,000	3,000	500	7,500 Cls
OUTAGE DURATION	60 minutes	120 minutes	100 minutes	500 minutes	113 minutes average duration
CUSTOMER INTERRUPTION MINUTES	180,000	120,000	300,000	250,000	850,000 CMs

Calculations

Customer Interruptions / Customers Served = SAIFI 7,500 Cls / 5,000 Customers Served = 1.5 SAIFI

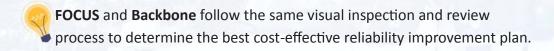
Customer Interruption Minutes / Customers Served = SAIDI 850,000 CMs / 5,000 Customers Served = 170 SAIDI

It's like every customer experienced 1.5 interruptions and 170 interruption minutes.

Asset Management Programs

FOCUS DEVICES

The FOCUS program quarterly identifies the devices with the highest customer interruptions and flags them for replacement. Prioritization is done using a jurisdictionally-based algorithm of two-year outage data to select devices (breakers, reclosers, line fuses, sectionalizers).


Along with network knowledge, the identified devices are then selected for inspection based on the FOCUS ranking and inspected by trained reliability servicemen. Inspection findings are reviewed by work management and discussed with field representatives to develop the most cost-effective reliability improvement plan.

All devices worked since 2011 under FOCUS have had two or fewer outages subsequent to the work.

BACKBONE PROGRAM

The backbone is the section of the feeder from the feeder breaker to the first protective device. The Backbone program ensures this most critical portion of any feeder is inspected regardless of past performance.

Backbone is a jurisdictionally-based, proactive approach to address potential reliability concerns, and is currently on a 12-year average cycle.

R1: BUILD IT RIGHT THE FIRST TIME

R1 is a strategic proactive approach to improving reliability every time a crew performs primary work by taking corrective action on issues known to cause outages or lead to a higher probability of an outage by addressing components that are deteriorating but have not already failed.

Designers, engineers and crew members working on a job should distinguish between failure and signs of degradation. Failed items must be repaired immediately using the established failure programs.

R1: Key Actions

ENSURE STRUCTURE BIL IS 300KV BIL OR HIGHER:

- Remove all bare ground wire above neutral.
- Remove all line arresters (not protecting equipment).
- Install proper length guy strain insulators (96-inch minimum).
- Retrofit all transformers to current standards.
- Install bushing animal guards.
- Replace combination switches and locate new arrester to load side of equipment fuse switch.
- Install continuous Hendrix ground wire in shielded lines (minimum 3 feet above primary and 3 feet below cross arm braces).

CORRECT ALL VISIBLE DAMAGE:

- Replace missing or repair existing pole grounds.
- Replace all flashed or broken porcelain insulators.
- Replace broken cross arms and braces.
- Replace corroded guys and anchors.
- Repair damaged jumpers and connections.
- Replace deteriorating fiberglass standoffs (tracking, burned, missing paint and moss growth).
- Missing neutral install minimum one span either side of pole being worked with driven ground rods at all poles. If significant neutral missing, consult work management.
- Replace all expoxilators and Heatherlite deadend insulators, regardless of condition.
 In Arkansas, replace LAPP insulators mounted horizontally, especially on larger conductors.
- Any other visible damage.

ENSURE STRUCTURE SPACING IS MAXIMIZED (REDUCE CROWDING):

- Check for clearance issues.
- Reposition primary conductors to achieve optimal spacing.
- Check for slack or excessive sag to reduce conductor slap issues.
- Replace anchors and guys as needed.
- Remove all idle equipment, materials, etc., from pole.
- Move street lights from the primary zone.

VEGETATION AND VINE REMOVAL:

- Trim any limb that could potentially cause an outage before the next trim cycle if the
 work can be done in 30 minutes or less. If trimming will take longer than 30 minutes,
 document the location and required needs for submission to your supervisor.
- Remove any vines growing up pole (spray or cut at base).

Reliability Meetings

KEY BEHAVIOR: Hold weekly face-to-race network meetings to drive supervisor ownership of reliability behaviors, build local reliability culture, and foster communications and accountability.

ATTENDEES

- · Supervisor (leads meeting)
- Utility foremen or operation coordinator
- Reliability servicemen
- Field engineer
- · Contract compliance operation coordinator
- · Vegetation representative

Design representative

- Customer service representative
- Work management
- Planning person

RECOMMENDED AGENDA

- · Short trainings.
- Lessons learned.
- · Best practices discussion.
- Action item review.
- Review previous week's outages and team performance using available reliability reports.
- Review current work plan projects status.
- Identify opportunities to address reliability issues as part of large jobs.

OPTIONAL

REQUIRED

Reliability Report Basics

KEY BEHAVIOR: Review these reports regularly so you don't miss key elements that can help you improve.

NAVIGATING TO REPORTS

Reports available on the utility performance and analytic website allow you to monitor feeder performance in your network or local office. To navigate to the site, go to the utility home page and select customer operations support and then click on the following menu options:

NAVIGATION PATH

- ⇒ Customer Operations Support
 - ⇒ Audit and Compliance
 - ⇒ Utility Performance and Analytics
 - ⇒ Customer Service Region Reporting

READING REPORTS

Reports are color-coded so you can see at a glance if performance is improving or decreasing, and if you are hitting your target goals.

ACRONYMS

DLIN – Distribution line

TLIN - Transmission line

DSUB - Distribution substation

TSUB - Transmission substation

Customer View – Includes outages on all four systems (*listed above*) but excludes major storm events and outages caused by load or voltage shed.

Reliability Reports

KEY BEHAVIOR: Review the Network Reliability Report at reliability meetings to show reliability results for your network.

NETWORK RELIABILITY BY CAUSE

Reliability Reports

DAILY RELIABILITY

Displays year-to-date CIs and CMs along with minimum, target and maximum goals. Displays actual results for outage count (cases), CIs, CMs, SAIFI, SAIDI and average duration with color coding to indicate goal achievement status. The previous year's numbers through the previous day's numbers are also listed, allowing a quick comparison to last year.

WHY IS THIS REPORT IMPORTANT?

You can view your network's color-coded goal achievement status for the key reliability metrics as well as the details for the previous day's outages.

CUSTOMER INTERRUPTIONS TO HIT YEAR-END TARGETS

Actual year-to-date daily average CIs are shown in the daily average column. The daily CIs needed for the remainder of the year to achieve your year-end goals are also shown.

WHY IS THIS REPORT IMPORTANT?

Allows you to focus on the remainder of the year.

HOW OFTEN SHOULD YOU RUN THE REPORT?

Bi-weekly or monthly.

HISTORICAL RELIABILITY

Displays CIs, CMs, SAIFI, SAIDI and average duration (CAIDI). Actual year-to-date results are color-coded based on goal achievement.

WHY IS THIS REPORT IMPORTANT?

Allows you to quickly review your network's goal achievement status.

HOW OFTEN SHOULD YOU RUN THE REPORT?

Review at reliability meetings (at least bi-weekly) to keep the team informed of your network's goal achievement status.

NETWORK RELIABILITY BY CAUSE

Current year and previous year data is shown for each cause category along with color-coded columns indicating which causes have improved or worsened.

WHY IS THIS REPORT IMPORTANT?

Displays reliability results for all your feeders, allowing you to identify the best and worst feeders so you can prioritize reliability improvement work.

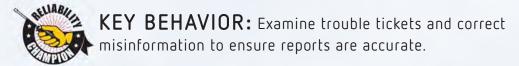
HOW OFTEN SHOULD YOU RUN THE REPORT?

Bi-weekly so you always know which feeders are your best and worst.

FEEDER RELIABILITY

Displays CIs and other key reliability metrics through yesterday for each feeder, grouped by substation.

WHY IS THIS REPORT IMPORTANT?


Displays reliability results for all your feeders, allowing you to identify the best and worst feeders so you can prioritize reliability improvement work.

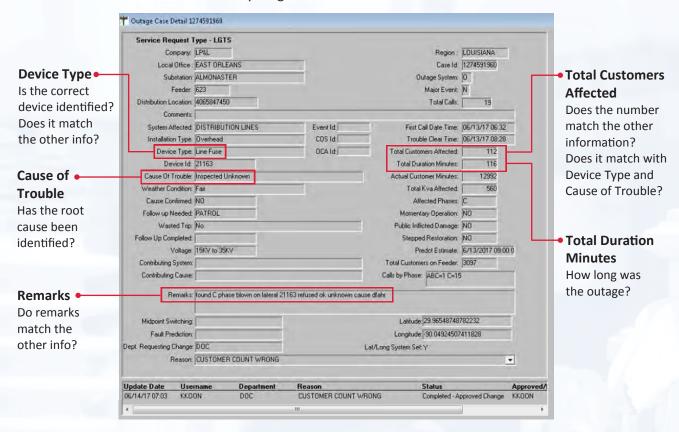
HOW OFTEN SHOULD YOU RUN THE REPORT?

Bi-weekly so you always know which feeders are your best and worst.

OUTAGE ROOT CAUSE

Data Scrubbing

USE A QUESTIONING ATTITUDE WHEN REVIEWING OUTAGE CASES


Data scrubbing helps you ensure your customer interruption numbers are correct.

How to run AM/FM DFM:

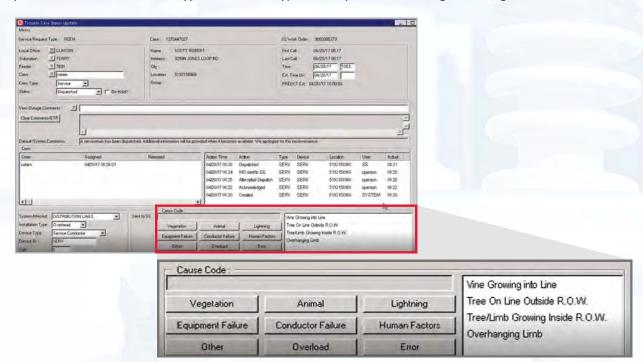
- 1. Go to Start > All Programs > Distribution Apps > AM/FM DFM.
- 2. Click Reports in the top tool bar.
- 3. Select Outage Management as the report category and Outages by Trouble Case as the report name.
- 4. Select your Distribution Region, Network and Service Request Type (LGTS for lights out cases).
- 5. Click Date Search from the tool bar and enter your dates.
- 6. Click Execute from the tool bar then click Sort from the tool bar to filter by device type.
- 7. Click and drag to open area in the sort window and click OK.

EXAMINE KEY AREAS IN TROUBLE CASES

Review the information to ensure everything matches and is correct.

OUTAGE ROOT CAUSE

Causal Codes


REVIEW CAUSAL CODES FROM OUTAGE REPORTS DAILY

Causal codes identify what caused an outage to help you understand what is happening on your network feeder.

Network: Vicksburg									Cause of						
Case ID	LOS	Substation	Feeder		Device		Field	First Call Date/	Trouble Clear	Total		Customer	Cause	Trout Cas	Trouble
				Affected	ID	Type	Personnel	Time	Date/ Time	Phases	Phases	Calls	Trouble	Renu	Scheduled
270408994	VIOXSBURG	VICKSBURG/ OPENWOOD	5003	DLIN	894737	TFUS	ALAN SCOTT	Apr 19, 2017 7:48:00 AM	Apr 19, 2017 8:40:38 AM	8	8	0	Scheduled Interruption	step 500 sec 6011 1315	Interruption
270409302	VICKSBURG	VIOSBURG/ WEST	5606	DLIN	57F0849	LFUS	/forbe2	Apr 19, 2017 8:07:00 AM	Apr 19, 2017 9:00:29 AM	c	c	2	Inspected Unknown	Sation Selon, p restored. Forbell	Inspected Unknown
1270411620	VICKSBURG	VIOKSBURG/ OPENWOOD	5003	DLIN	FE399	urus	ALAN SCOTT	Apr 19, 2017 9:21:00 AM	Apr 19, 2017 10:10:49 AM	8	8	0	Scheduled Interruption	atlan soot sign-512- replacing cross are pose	Scheduled
220411652	VIOKSBURG	VIOSBURG/	5003	N.W.	701740	TPUS	ALAN SCOTT	Apr 19, 2017	Apr 19, 2017		,	0	Scheduled	Man 60X 601-527-	Interruption
1270411652	VALKSBURG	OPENWOOD	5003	DLIN	781249	11/05	ALAN SCOTT	9:23:00 AM	10:10:36 AM	c	c	0	Interruption	COURS ATT DOSE	Scheduled Interruption

SELECT THE CORRECT CODE

Selecting the right causal code is key to identifying the main problem affecting reliability. Codes are displayed by the system affected, installation type and device type, so only those matching the outage criteria are shown.

- WE POWER LIFE™